=====Sandbox===== rem **\\ rem least squares polynomial fitting:-\\ def fn_polyfit(Order,Npoints,z())\\ \\ \\ local i\\ local o% : o%=Order\\ if o<1 or o>6 then print "cannot have polynomial order of ";o : end\\ \\ \\ \\ \\ local N% : N%=Npoints\\ local x(), y(), xn(), xny() : dim x(N%), y(N%), xn(N%), xny(N%)\\ \\ \\ local m() : dim m(o%,o%) : rem matrix\\ local v() : dim v(o%) : rem vector\\ \\ \\ for i=1 to N%\\ x(i-1)=z(i,0) : y(i-1)=z(i,1)\\ next\\ \\ \\ rem all constants, for order 1 to 6, shown here for clarity:-\\ xny() = y() : _y1 = sum(xny())\\ xn() = x() : _x1 = sum(xn())\\ \\ \\ xny() = xn() * y() : _x1y = sum(xny())\\ xn() = xn() * x() : _x2 = sum(xn())\\ \\ \\ xny() = xn() * y() : _x2y = sum(xny())\\ xn() = xn() * x() : _x3 = sum(xn())\\ \\ \\ xny() = xn() * y() : _x3y = sum(xny())\\ xn() = xn() * x() : _x4 = sum(xn())\\ \\ \\ xny() = xn() * y() : _x4y = sum(xny())\\ xn() = xn() * x() : _x5 = sum(xn())\\ \\ \\ xny() = xn() * y() : _x5y = sum(xny())\\ xn() = xn() * x() : _x6 = sum(xn())\\ \\ \\ xny() = xn() * y() : _x6y = sum(xny())\\ xn() = xn() * x() : _x7 = sum(xn())\\ \\ \\ xn() = xn() * x() : _x8 = sum(xn())\\ xn() = xn() * x() : _x9 = sum(xn())\\ xn() = xn() * x() : _x10 = sum(xn())\\ xn() = xn() * x() : _x11 = sum(xn())\\ xn() = xn() * x() : _x12 = sum(xn())\\ \\ \\ \\ \\ \\ \\ rem 1st order is straight line fit ****\\ if o%=1 then\\ m() = \\\ \ N%, _x1, \\\ \ _x1, _x2\\ \\ \\ v() = _y1, _x1y\\ \\ \\ endif\\ \\ \\ \\ \\ rem 2nd order is quadratic fit ****\\ if o%=2 then\\ m() = \\\ \ N%, _x1, _x2, \\\ \ _x1, _x2, _x3, \\\ \ _x2, _x3, _x4\\ \\ \\ v() = _y1, _x1y, _x2y\\ \\ \\ endif\\ \\ \\ rem 3rd order is cubic fit ****\\ if o%=3 then\\ m() = \\\ \ N%, _x1, _x2, _x3, \\\ \ _x1, _x2, _x3, _x4, \\\ \ _x2, _x3, _x4, _x5, \\\ \ _x3, _x4, _x5, _x6\\ \\ \\ v() = _y1, _x1y, _x2y, _x3y\\ \\ \\ endif\\ \\ \\ rem 4th order **\\ if o%=4 then\\ m() = \\\ \ N%, _x1, _x2, _x3, _x4, \\\ \ _x1, _x2, _x3, _x4, _x5, \\\ \ _x2, _x3, _x4, _x5, _x6, \\\ \ _x3, _x4, _x5, _x6, _x7, \\\ \ _x4, _x5, _x6, _x7, _x8\\ \\ \\ v()=_y1, _x1y, _x2y, _x3y, _x4y\\ \\ \\ endif\\ \\ \\ rem 5th order **\\ if o%=5 then\\ m() = \\\ \ N%, _x1, _x2, _x3, _x4, _x5, \\\ \ _x1, _x2, _x3, _x4, _x5, _x6, \\\ \ _x2, _x3, _x4, _x5, _x6, _x7, \\\ \ _x3, _x4, _x5, _x6, _x7, _x8, \\\ \ _x4, _x5, _x6, _x7, _x8, _x9, \\\ \ _x5, _x6, _x7, _x8, _x9, _x10\\ \\ \\ v()= _y1, _x1y, _x2y, _x3y, _x4y, _x5y\\ \\ \\ endif\\ \\ \\ rem 6th order **\\ if o%=6 then\\ m() = \\\ \ N%, _x1, _x2, _x3, _x4, _x5, _x6, \\\ \ _x1, _x2, _x3, _x4, _x5, _x6, _x7, \\\ \ _x2, _x3, _x4, _x5, _x6, _x7, _x8, \\\ \ _x3, _x4, _x5, _x6, _x7, _x8, _x9, \\\ \ _x4, _x5, _x6, _x7, _x8, _x9, _x10, \\\ \ _x5, _x6, _x7, _x8, _x9, _x10, _x11, \\\ \ _x6, _x7, _x8, _x9, _x10, _x11, _x12\\ \\ \\ v()= _y1, _x1y, _x2y, _x3y, _x4y, _x5y, _x6y\\ \\ \\ endif\\ \\ \\ rem solve the set of simultaneous equations:-\\ proc_invert(m())\\ v()=m().v()\\ ====== !^v() rem return pointer to vector. (v() is array containing coefficents. eg y ====== v(0)*x^0 + v(1)*x^1 + .... etc\\ \\ \\ \\ \\ \\ \\ \\ rem----------------------------------------------------------------------------