| Function | Calculation |
|---|---|
| SECANT | |
| SEC(X)=1/COS(X) | |
| COSECANT | |
| CSC(X)=1/SIN(X) | |
| COTANGENT | |
| COT(X)=1/TAN(X) | |
| Inverse SECANT | |
| ARCSEC(X)=ACS(1/X) | |
| Inverse COSECANT | |
| ARCCSC(X)=ASN(1/X) | |
| Inverse COTANGENT | |
| ARCCOT(X)=ATN(1/X) =PI/2-ATN(X) | |
| Hyperbolic SINE | |
| SINH(X)=(EXP(X)-EXP(-X))/2 | |
| Hyperbolic COSINE | |
| COSH(X)=(EXP(X)+EXP(-X))/2 | |
| Hyperbolic TANGENT | |
| TANH(X)=EXP(-X)/(EXP(X)+EXP(-X))*2+1 | |
| Hyperbolic SECANT | |
| SECH(X)=2/(EXP(X)+EXP(-X)) | |
| Hyperbolic COSECANT | |
| CSCH(X)=2/(EXP(X)-EXP(-X)) | |
| Hyperbolic COTANGENT | |
| COTH(X)=EXP(-X)/(EXP(X)-EXP(-X))*2+1 | |
| Inverse Hyperbolic SIN | |
| ARCSINH(X)=LN(X+SQR(X*X+1)) | |
| Inverse Hyperbolic COSINE | |
| ARCCOSH(X)=LN(X+SQR(X*X-1)) | |
| Inverse Hyperbolic TANGENT | |
| ARCTANH(X)=LN((1+X)/(1-X))/2 | |
| Inverse Hyperbolic SECANT | |
| ARCSECH(X)=LN((SQR(-X*X+1)+1)/X) | |
| Inverse Hyperbolic COSECANT | |
| ARCCSCH(X)=LN((SGN(X)*SQR(X*X+1)+1)/X | |
| Inverse Hyperbolic COTANGENT | |
| ARCCOTH(X)=LN((X+1)/(X-1))/2 | |
| LOGn(X) | |
| LOGn(X)=LN(X)/LN(n) =LOG(X)/LOG(n) | |
|
CONTINUE
|